Cannabis intoxication detection possible using smartphone sensor data
Scientists have said in a study, published in Drug and Alcohol Dependence, that it is possible to use smartphone sensor data to detect cannabis intoxication.
Researchers evaluated the feasibility of using smartphone sensor data to identify episodes of cannabis intoxication in the natural environment, a combination of time features (tracking the time of day and day of week) and smartphone sensor data had a 90 percent rate of accuracy. They say that based on the data of these sensors, it could be possible to detect when a person might be experiencing cannabis intoxication and deliver a brief intervention when and where it might have the most impact to reduce cannabis-related harm.
Cannabis intoxication has been associated with slowed response time, affecting performance at work or school or impairing driving behavior leading to injuries or fatalities. Existing detection measures, such as blood, urine or saliva tests, have limitations as indicators of cannabis intoxicatioon and cannabis-related impairment in daily life.
The researchers analyzed daily data collected from young adults who reported cannabis use at least twice per week. They examined phone surveys, self-initiated reports of cannabis use, and continuous phone sensor data to determine the importance of time of day and day of week in detecting use and identified which phone sensors are most useful in detecting self-reported cannaabis intoxication.
They found that time of day and day of week had 60 percent accuracy in detecting self-reporting of cannabis intoxications and the combination of time features and smartphone sensor data had 90 percent accuracy in detecting cannabis intoxicatioon.
Travel patterns from GPS data – at times when they reported feeling high — and movement data from accelerometer that detects different motions, were the most important phone sensor features for detection of self-reported cannabis intoxication.
Researchers used low burden methods (tracking time of day and day of week and analyzing phone sensor data) to detect intoxication in daily life and found that the feasibility of using phone sensors to detect subjective intoxication from cannabis consumption is strong.
Future research should investigate the performance of the algorithm in classifying intoxicated versus not intoxicated reports in those who use cannabis less frequently. Researchers should study reports of intoxication using tools that law enforcement might use showing a stronger correlation with self-reported cannabis use.